Understanding Spatial Genome Organization: Methods and Insights

نویسندگان

  • Vijay Ramani
  • Jay Shendure
  • Zhi-jun Duan
چکیده

The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights from Space: Potential Role of Diet in the Spatial Organization of Chromosomes

We can now sequence and identify genome wide epigenetic patterns and perform a variety of "genomic experiments" within relatively short periods of time-ranging from days to weeks. Yet, despite these technological advances, we have a poor understanding of the inter-relationships between epigenetics, genome structure-function, and nutrition. Perhaps this limitation lies, in part, in our propensit...

متن کامل

Meet the neighbours: tools to dissect nuclear structure and function.

The eukaryotic cell nucleus displays a high degree of spatial organization, with discrete functional subcompartments that provide microenvironments where specialized processes take place. Concordantly, the genome also adopts defined conformations that, in part, enable specific genomic regions to interface with these functional centers. Yet the roles of many subcompartments and the genomic regio...

متن کامل

Eukaryotic gene regulation in three dimensions and its impact on genome evolution.

Recent advances in molecular techniques and high-resolution imaging are beginning to provide exciting insights into the higher order chromatin organization within the cell nucleus and its influence on eukaryotic gene regulation. This improved understanding of gene regulation also raises fundamental questions about how spatial features might have constrained the organization of genes on eukaryot...

متن کامل

Three-Dimensional Genome Organization and Function in Drosophila

Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider gen...

متن کامل

Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture

The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advanceme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016